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Coordinate generation techniques with precise controls over mesh properties are 
mathematically developed. The controls are precise because mesh properties can be explicitly 
specified within a local region independent of the mesh elsewhere. The local regions can 
adjoin boundaries where a particular mesh form can greatly simplify a problem or can be 
used for a smooth juncture between distinct coordinate systems where, in effect, a branch cut 
with a prescribed geometry and mesh distribution can be obtained. Away from boundaries, a 
local region can be given a particular mesh form to model internal objects or to simplify a 
problem. 

The numerical solution of boundary value problems over complicated domains 
often requires the application of a mesh generation algorithm in which specifications 
of mesh properties are possible. Such properties include boundary specifications (for 
geometry, pointwise distributions, mesh angles, and rates of entry), uniformity 
specifications (for either local or global distributions of coordinate curves or points), 
and specifications for numerous interior properties such as the smooth (i.e., with 
continuous derivatives) embedding of a Cartesian system within a global mesh. The 
boundary specifications are useful when coordinate systems are to be smoothly 
assembled to form a well-ordered composite mesh; mesh uniformity is necessary 
when points or curves are to be redistributed by an a priori specification of a 
distribution function or by a solution adaptive approach, both without any distortion 
from the underlying transformation; and finally, when an interior form such as 
Cartesian or polar would simplify the form of the equations to be solved. 

To generate a mesh with specified properties, transformations of a general type 
must be considered. In this context, conformal transformations are too restrictive 
since a specified distribution of boundary points generally could not be given in 
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advance because of the analytic continuation properties of analytic functions. 
Examples of some of the most developed conformal techniques are given by Ives [ 1 ] 
and by Davis [2]. To admit arbitrary boundary distributions, nonorthogonal transfor- 
mations were considered. The first general approach was to specify both the 
boundary geometry and pointwise distributions as boundary conditions for a system 
of elliptic partial differential equations of the Poisson type [3,4]. In addition, 
periodic conditions resulted in the capability to make branch cuts, and consequently, 
to make some composite systems [5,6]. The smooth junctures (branch cuts) between 
such systems, however, could not be simply prescribed in advance: a simple 
prescription would require Dirichlet boundary conditions, and hence, derivative 
discontinuities along the cut [7,8]. In this context, the creation of extra boundary 
conditions would be less successful since an increase in the order of the system would 
be required; as a result, the previous guarantee of nonsingularity would be lost. 
Consequently, the only remaining possibility is an algorithm for the selection of the 
forcing functions, such as the study pursued with some success by Steger and 
Sorenson [9]. The simultaneous specification of further mesh properties, beyond that 
considered by Steger and Sorenson, is extremely limited with methods based upon 
Poisson equations. 

In a subsequent general approach to the mesh generation problem, the additional 
specifications of mesh properties became possible with the development of the 
multisurface method [lo] which extended earlier work on coordinates for cascades of 
turbine blades [ 111. With the multisurface method, intermediate control surfaces are 
introduced between bounding surfaces so that the mesh properties can be naturally 
prescribed by parametric alignment. In particular, the control surfaces, which should 
not be mistaken for coordinate surfaces, define a discrete vector field which is inter- 
polated, integrated, and normalized to obtain the desired transformation. In the basic 
multisurface study [lo], only polynomial interpolates were considered. The resulting 
transformations provided all of the desired boundary specifications for the form of 
the mesh without the necessity for solving differential equations. An automatic 
algorithm based upon the multisurface transformation also has an advantage with 
dimensionality since n-dimensional coordinates are constructed from only (n - l)- 
and l-dimensional surfaces. As a consequence, the advantage is in computational 
speed and storage. In addition, special cases can be specified analytically, should that 
prove to be more convenient or more conservative of computer storage. One such 
case was the three-dimensional coordinate system about wings presented in ] 12 1. 

In the present study, the multisurface transformation is derived with interpolants 
each of which vanishes identically outside of a small region around its corresponding 
point of interpolation. These local interpolants then lead directly to precise local 
controls on the form of the mesh both along the boundaries and internally. Although 
local controls are available with methods based upon Poisson equations and with the 
polynomial version of the multisurface transformation, the capability for precise 
internal specifications are not. As an example of the desired degree of precision, a 
region with curved boundaries can be transformed in such a way that most of the 
interior is covered by a uniform Cartesian mesh which need not be rectangular. A 
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discrete representation of a boundary value problem over the region would then 
smoothly change from a fully curvilinear form to a simpler Cartesian form over most 
of the mesh area. 

The general multisurface transformation of [lo] is given with arbitrary inter- 
polation functions in a preliminary section where the interpolation functions are used 
to establish a smooth vector field tangent to a desired family of coordinate curves. 
Part or all of the coordinate curves in the family can be given a uniform distribution, 
provided that the interpolants are properly chosen. Conditions for the admissibility of 
uniformity are then derived for the general interpolation functions. From this stage, 
particular local interpolation functions which satisfy the admissibility condition are 
constructed and examined for various levels of derivative continuity. In the present 
study, the functions are only required to be in the continuity class of Co functions 
where 0 indicates the highest continuous derivative. In particular, these functions are 
piecewise linear functions which are relatively easy to examine. The resulting 
transformation has continuous first derivatives and consequently belongs to class C ‘. 
Rather than a direct progression to higher levels of derivative continuity, a short 
sequence of two-dimensional examples are presented herein to explicitly demonstrate 
the power of local methods. In a companion study [ 131, higher level continuity is 
developed. The increased level is needed to extend the range of applications. Of 
particular importance is the extension to the general case in three dimensions, where 
C2 continuity is a minimum requirement to insure that coordinate curves bend 
continuously, not abruptly. 

THE MULTISURFACE TRANSFORMATION 

When curvilinear coordinates are employed in the numerical solution of a 
boundary value problem, constraints must often be placed upon the coordinates, in 
addition to the basic requirement that the bounding surfaces are coordinate surfaces 
of one or more coordinate systems. The locations of the constraints can occur 
anywhere in the problem domain. On the boundaries, a particular pointwise 
distribution may be needed; in regions near boundaries, a particular coordinate form 
may be advantageous; and away from the boundaries, an internal coordinate 
specification may also be required. Typically, the constraints will arise either to 
resolve regions with large solution gradients or to cause some simplification in the 
problem formulation and solution. 

In conjunction with the demand for constraints, methods for generating coordinates 
have been developed to meet the demand. One of the most flexible methods for this 
purpose is the multisurface method presented in [IO]. The full level of flexibility, 
however, was not entirely exploited in [lo], since the emphasis was placed upon 
global methods which gave more control near boundaries and less internally. In the 
present study, local methods will be developed within the context of the general 
multisurface transformation. The result will be precise local controls which are 
applicable anywhere in the problem domain. 
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As a preliminary to the present study, the general multisurface transformation must 
be examined. The multisurface transformation is a method for coordinate generation 
between an inner bounding surface P, and an outer bounding surface P,. To establish 
a particular distribution of mesh points on each bounding surface, a common 
parameterization t is chosen for each surface. This is equivalent to a coordinate 
description of the surfaces which yields the desired surface mesh when the parametric 
components of t are given a uniform discretization. With the parametric description, 
the inner and outer bounding surfaces are denoted by P,(t) and Ph’(t), respectively. At 
this stage, coordinates could be generated along the straight line segments connecting 
points of common parametric value of each bounding surface [ 11). In continuation, 
parameterized intermediate surfaces P*(t),..., P,-,(t) are introduced so that they can 
be used as controls over the internal form of the coordinates. The intermediate 
surfaces are not coordinate surfaces, but instead are surfaces that are used to 
establish a vector field that is composed of tangent vectors to the coordinate curves 
spanning the coordinate system to connect bounding surfaces. It is also assumed that 
the collection of surfaces PI(t), PJt),..., PN(t) is ordered from bounding surface to 
bounding surface. An illustration is given in Fig. 1. For a fixed parameter value t, 
there is a corresponding point on each surface. The piecewise linear curve obtained 
by connecting corresponding points is given by the dashed curve in Fig. 1. From the 
figure, it can be observed that the tangent directions determined by the piecewise 
linear curve are piecewise constants. As t is varied, the field of tangent directions 

FIG. I. A piecewise linear curve and its tangent field. 
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obtain their smoothness only in t. To obtain smoothness in going from bounding 
surface to bounding surface, a sufficiently smooth interpolation must be performed. 
The result is a smooth vector field of undetermined magnitude which gives the desired 
tangential directions for coordinate curves connecting the bounding surfaces. A 
unique vector field of tangents is then obtained by correctly choosing magnitudes so 
that, on integration, the bounding surfaces are fit precisely. 

In symbols, a vector field tangent to the piecewise linear curves is given by V,(t) = 
Ak(Pk+ ,(t) - P,Jt)] between the kth and (k + 1)th surfaces, where k is taken to vary 
(if N > 2) from the first bounding surface to the final intermediate surface. These 
vectors are indicated in Fig. 1. The coefficients A, are scalars which determine the 
magnitude of the vectors but not the directions. An independent variable r is assumed 
for the spanning direction. A vector valued function which is discrete in r can now be 
defined as a map from rk into V, for a partition r, < rz < ..+ < r,.-, and for 
k = I,..., N- 1. A sufficiently smooth vector field V(r, t) is then obtained by a 
sufficiently smooth interpolation V(r,, t) = V,(t). With r as a continuous independent 
variable, the r derivative of the coordinate transformation P(r, t) is equal to the inter- 
polant. Specifically, 

i3P h 1 
-= V = \‘ tyk(r)Vk(t). 
&- k’-! 

(1) 

where yk(rj) is unity at k =j and vanishes otherwise. Since the coordinate transfor- 
mation must be obtained from an integration in the r variable, the interpolant v/~ 
must be continuously differentiable up to an order which is one less than the level of 
smoothness desired for the coordinates. The construction of the local controls 
mentioned above will rely heavily upon the development of suitably smooth inter- 
polation functions. If the integral of Eq. (1) has a constant of integration equal to 
P,(t) and if the quantities Aktyk(r) integrate to unity over the domain r, ,< r < r,\..-, , 
then a coordinate transformation which matches the desired bounding surfaces is 
obtained. This transformation is called a multisurface transformation since, in 
addition to bounding surfaces, it also uses a collection of surfaces which are not coor- 
dinate surfaces, but which instead are surfaces that can be used to control the form of 
the coordinates throughout the domain. The multisurface transformation is then 
explicitly given by 

P(r, t) = P,(t) + 12; .;:“1 ) iPk+,@) - Pk(f)l, 
k h 1 

Pa) 

where 

Gk(r) = l’r vk(x) dx, 
. r1 

(2b) 
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for k = 1, 2,..., N - 1. Due to the normalization conditions on the A,, the original 
semidiscrete vector field, illustrated in Fig. 1, is given by 

V,(t) = (W,(r,-,))IP,+ ,@I - P&)1, (3) 

for k = 1, 2 ,..., N - 1. 

A UNIFORM DISTRIBUTION OF COORDINATE SURFACES 

The distribution of any set of objects is most accurately specified relative to 
uniform conditions. When the objects are points on a straight line segment and when 
uniform conditions are represented by an arc length parameterization S, a 
substitution of a distribution function S(X) will directly distribute points along the 
line relative to distance. In a discrete sense, a uniform mesh in x corresponds with an 
appropriately distributed mesh on the line. When the objects to be distributed, 
however, are families of coordinate surfaces rather than isolated points, the measure 
of uniformity and its determination is more complex. In spite of the potential 
complexities, it is possible to define a measure of uniformity and to determine 
appropriate conditions in a relatively simple manner for the multisurface transfor- 
mation (Eq. (2)). 

With the multisurface transformation, uniformity can be defined and obtained for 
the family of coordinate surfaces determined by constant values of the variable r. 
Relative to the uniform distribution of the constant r coordinate surfaces, a 
distribution function Y(X, t) can be directly applied without any distortion from the 
basic underlying multisurface transformation P(r, t), given in Eq. (2). The transfor- 
mation with distribution is then given by the composition P(r(x, t), t) with a new 
variable x. Both the uniformity and the distribution function can be defined either 
globally or locally. In the global case which was studied in [ 101, uniformity 
conditions were imposed on the underlying transformation as the constant Y 
coordinate surfaces are taken from bounding surface to bounding surface. By 
contrast, in the local case, a particular local coordinate form can be specified from 
constant Y coordinate surfaces, where the domain of Y is restricted to a specified 
region. 

For both local and global uniformity, a smooth vector field r(t) is specified to 
define directions in which uniformity can be measured for each value of t. The 
measurement is given by the dot product 

S,(r, t) = [P(r, t) - P,(t)] . .r(t) (4) 

which is a projection of a coordinate curve in the r variable onto the direction given 
by r(t). Since S, is just a distance along r(t), it can be called a projected arc length. 
In a very real sense, the various measurements of distance in the various directions 
can be viewed as if a collection of yardsticks were used for such measurements 
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between points corresponding to t as t varied. From a substitution of the multisurface 
transformation (Eq. (2)), the projected arc length becomes 

“‘;I Gk(r) S,(r, t) = \ 
krl Gk@-,V- I > 

ck(t>, W 

where 

‘k@> = rPk+ I@> - ‘k@)] ’ r(t) Pb) 

is the projection of the kth discrete tangent vector onto the vector field direction. 
When the projected arc length is linear in r for a range of t values, the distribution 

of constant r coordinate surfaces will be uniform relative to the vector field r(t). 
When linearity exists only for a limited range of r, the uniformity will be valid only 
locally, as opposed to a global uniformity valid for all values of r. To establish a 
good measure for uniformity, the selected vector field directions must be well aligned 
with the variable r coordinate curves or the parts of those curves where uniformity is 
to be considered. A readily available class of vector fields which are well aligned 
either locally or globally is given by 

(6) 

where 1 <j < i < N. When r(t) = TN12(t) is inserted into Eq. (4) and when linearity is 
imposed, the global uniformity conditions studied in [lo] for the cases with 
polynomial interpolation functions are obtained. The choice k = 2 resulted in a 
normalization of projected arc lengths to all lie within the internal Ir, , r,\.-, 1, and as 
such was a convenience since uniformity reduced to S, = (r - r,)/(r,% _ , - r,). An 
illustration of this global case is given in Fig. 2. If k had been set to unity, then 

FIG. 2. A projected arc length for global uniformity. 
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uniformity would have been given by S, = /IP, - P, Il(r - r,)/(~,~~ , - r,), reflecting 
the actual rather than relative distances. This latter choice will be preferred when 
local uniformity is considered, since actual distances would be less confusing. 

In the general case, the uniformity condition is given by 

S,(r, t) = b(t)(r - r,)/(r,vmm, - r,), (7) 

where b(t) is determined by the choice of r(t). To satisfy the uniformity condition of 
Eq. (7), suitable choices for the N - 1 discrete projections C,(t) of Eq. (5b) must be 
determined. By function evaluation at each of the partition points, a coupled system 
of N - 1 independent equations is obtained from Eq. (7). Although the coupled 
system could be solved with some linear algebra, the same solution can be obtained 
by a direct observation of the derivative equation 

as, ‘7.’ V/k(r) 
ar - z, G,(r,_,) C/&h (8) 

which is equivalent to Eq. (5) when the initialization S,(r,, t) = 0 is applied. Since 
the interpolation functions satisfy a cardinality condition wi(rj) = A,aij for some 
constants Ai, the uniformity condition in differentiated form collapses to an equation 
with just one term on each side. The immediately observed solution is then given by 

CkO) = b(t) Gk- ,)l(rN- , - r,> vkdr (9) 

for k = 1, 2,..., N - 1. As an example, the uniformity conditions of [ 10 1 are also 
contained in Eq. (9). When Eqs. (7) and (9) are inserted into Eq. (8) and when 
b(t)/(rN- i - r,) is divided out of both sides of the resulting equation, the uniformity 
constraint 

is obtained. By a parallel analysis, this constraint is also seen to be valid in the 
slightly more general case where the origin P,(t) in Eq. (4) is replaced by an arbitrary 
vector field dependent only upon t. In summary, one has 

THEOREM 1. For uniformity to be possible either locally or globally, the inter- 
polation functions must be chosen to satisfy Eq. (10). When the interpolation 
functions satisfy Eq. (lo), uniformity can be specified by a selection of intermediate 
control surfaces in such a way that the discrete projections of Eq. (5b) are given 6) 
W (9). 



CONTROLS OVERMESH PROPERTIES 339 

LOCAL Co INTERPOLATION FUNCTIONS 

The multisurface transformation (Eq. (2)) is defined locally when the interpolation 
functions wk are chosen to vanish outside of a small interval. The advantage inherent 
in the local definitions is that the coordinates can be manipulated in a local region 
without causing a concurrent ripple effect that would change coordinates elsewhere, 
as would occur with global methods. The local manipulations, moreover, can be done 
in a precise fashion and consequently, lead to precise controls over the coordinates. 
The coordinates have a level of smoothness which, due to the multisurface integration 
(Eq. (2b)), is one level of differentiability higher than that specified for the inter- 
polation functions. In particular, if the interpolants belong to the class C” of 
functions which have continuous mth order derivatives then the multisurface transfor- 
mation belongs to class Cm’ ’ when the surfaces Pk(t) also belong to class Cm+‘. In 
general, the complexity of the interpolants increases when the level of smoothness is 
increased. Consequently, it is best to use the least amount of smoothness that is 
permissable for a given problem. In fact, a large percentage of the potential 
applications can be studied with either Co or C’ interpolants. 

The simplest local interpolants belong to the class Co of continuous functions and 
are defined by linear segments. An illustration of these continuous piecewise linear 
interpolation functions is given in Fig. 3. On examination of the multisurface transfor- 
mation (Eq. (2)), the height vk(r,) of the interpolation functions is seen to be 
arbitrary since a change of scale by multiplication with any real number would not 
change the transformation. For algebraic simplicity, each vk(rk) will then be set to 
unity and the notation h, = rk+, - rk will be used for k = 1, 2,..., N - 2. With the 
specific heights, the algebraic expressions for the interpolation functions are given by 

v1 (r) = (b - r)/h 1 y 

= 0, 

for r, < r < rz, 

for r,,<r<r,._,, 

for r, <r < rkp,. 

= (r-rk-,)/hk-,, for rk-, <r c rk, 

= h+ 1 - r)lL for rk<r<rkt,, 

= 0, for rk+, <r,<r.+,, 

for 2<k,<N-2; and 

w,+ l(r) = 0, 

= (r - r,_ dlh,w 

(1 lb) 

(1 lc) 

One may also note that the Co interpolation functions are B-splines [ 141 of degree 1. 
In the C ’ case considered separately in. Eiseman [ 13 1, B-splines will not work for 
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‘2 rk-l rk ‘k+l k-2 rN- 1 

FIG. 3. Continuous piecewise linear interpolation functions. 

reasons that will be clear when the C’ developement is undertaken. By a direct 
substitution from Eq. (1 l), the integrals (Eq. (2b)) for the multisurface transformation 
are given by 

G,(r) = (h/2) - (lP,)(‘+z - r>*, for r, < r < r2, 
(1-W 

= h,/& for r,<r<r,-,, 

Gk(r) = 0, for rr < r < rk- , , 

= (1/2hk-,)(r - rk-,)‘, for r k-l<r<rk, 

= ((h/t + hk- ,)/2) - 

(1/2hk)@‘k+I - r)2T for rk<r<rk+Ir (12b) 

= (h, + h,- I)/& 

for 2,<k<N-2; and 

G,-,(r)=@ 

= (1/2h,-,)(r - r,-,)*, 

for r, <r < rh-?, 

for r,vm2<r<r,,- ,. 
(12cl 

A graphical illustration of the functions from Eq. (12) is given in Fig. 4. Each 
function increases from 0 to a maximum saturation value which is precisely the 
normalization value in the multisurface transformation, Eq. (2a). When the functions 
in Fig. 4 are given the normalization, the functional shape remains unaltered, but the 
saturation value becomes unity. On the interval rm < r < rm+ , , the effect of the 
saturation values is to cause a telescopic collapse of P,(t) and the first m - 2 terms of 
the sum in Eq. (2a). The last terms in the sum, starting with k = m + 1 and going up 
to k = N - 1, simply do not appear since their values are 0. Consequently, on the 
interval rm < r < r, + 1, the multisurface transformation reduces to the local form 

P(r, t> = P,(t) + G,(rN- ,) Gm(r) IPm+l(t) - Pm@>1 

Gm+l(r) + Gm, ,@,,--I) Pm+2@) - P,,,@)l~ (13) 
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. . . =k-1 =k 5(+1 *-. 

6) 

GN-l 

. . . 
‘N-2 rN-l 

Cc) 

FIG. 4. Integrals of the Co interpolation functions from Fig. 3. 

which is valid for m = 1, 2,..., N - 2 and was anticipated by the local construction of 
interpolation functions. Since the interpolants are not differentiable at the partition 
points rk, the coordinate curves in the r variable usually have second derivative 
discontinuities, hence curvature and torsion (cf. [ 151) discontinuities, at partition 
points. Since torsion is a measure of the rate at which a curve will be nonplanar, a 
torsion discontinuity would lead to a kink in a curve in three-dimensional space. The 
torsion discontinuities, however, can be removed by considering only curves in two 
dimensions, in which case torsion vanishes identically. Consequently, for the Co 
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interpolants, the applications will be restricted to two dimensions and the scalar 
parameterization t = t will be assumed for Eq. (13). 

With the two-dimensional parameterization, the evaluation of the transformation 
(Eq. (13)) at partition points is given by 

w, 3 1) = P,(t), (14a) 

P(rmr t> = IW@,-, + &J] p,(t) + [hm-,/pm-, + II,)] P,+,(t), (14b) 

for 2<m<N-2, and by 

w,- I1 t) = P&). (14c) 

When m = 1 or N - 1, the respective bounding surfaces are fit as expected; and when 
m is between 1 and N - 1, the evaluation lies on the line segment between P,(t) and 
P,+,(t) since the coeffkients each belong to the unit interval and add up to unity. 
Consequently, the vector differences in the transformation (Eq. (13)) can be rewritten 
as scaled differences between P,, I(t) and the evaluations at rm and r,,,+ I’ respec- 
tively. When P,, ,(t) is obtained from Eq. (14b) and P,(t) is subtracted from the 
result, one has 

P,+,(t) - P,(t) = (1 + @ml&?-,))lPm+ 10) - wtn, t)L (154 

and similarly, one has 

when Eq. (14b) with m replaced by m + 1 is solved for P,+,(t) and subtracted from 
P,,,+*(t). The equations are simultaneously valid when 3 < m + 1 < N - 3. Otherwise, 
an endpoint evaluation occurs and the original difference would remain unchanged. 
By an addition and subtraction of the first difference in Eq. (13), the transformation 
can be centered locally about P,, , (t), thus replacing P,,,(t). From substitutions of 
Eqs. (14a), (15), ad (14~) into the locally centered forms, the transformation is 
expressed by 

WY 0 = Pdt) - 11 - (GI(r)IGI(rN-I))lIPZ(t) - WI, t>l 
+ (1 + (hzlh,))(Gz(r)lGz(r,-,))IP(r,, 1) - P&)1, (164 

for r, < r < rz; 

P(r,t)=P,+,(t)-(1 +(~,-,l~,))ll-(G,(r)lG,(r,-l))l~P,+l(t)-P(r,l~)I 

+ (1 + N,,, llk,))(Gm+ ,WG,+ 10-N-l)P(rm+ I y 4 - Pm+ IWly (16b) 
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for rm<rr(rm+,, 2<m<N-2; and 

p(r,~)=P,-,(t)-(l+(h,_,lh,-,))[l-(G,-,(r)lG,,(r,-,))lIP,-,(t)-P(r,,,t)l 
+ (GN-I(r)/GN--I(rN~l))IP(r,-,, ~)-PN-df)L (16~) 

for r,-,<r<r,-,. 
Since the coordinate curves in the r variable are parabolic in each component and 

on each interval in Eq. (16), a resonable expectation would be for the curve to have 
no inflection points within an interval. To prove this assertion, the tangent vector 
must be computed. The natural unnormalized tangent vectors are given by the r 
derivative. When the r derivative of Eq. (16) is taken along with corresponding 
substitutions from Eqs. (11) and (12), the result is given by 

+ (17) 

for rm < r < r,,,+ , and m = 1, 2 ,..., N - 1. A graphical illustration is given in Fig. 5, 
where the scaled derivative (h,/2)(8P/a ) ’ d r IS ecomposed into the two components of 

-t 
Pmtl(t) Crtil,t) 

7 

/ 

/ 
/ 

/ 
/ 

/ 

_.... .:. 

f(, m’t) 

,.2 
..i 

.:' 
Unit 

circle 
,:’ 

,. .’ 

FIG. 5. Component decomposition of the derivative. 
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Eq. (17). The first component, P, + i(t) - P(r, , t), is just a tangent vector at the point 
r,. The second component, P(rm, t) - 2P,+ ,(t) + P(r,+ , , t), points in the discrete 
normal direction, or in other words, towards the concave side of the piecewise linear 
curve locally defined by P(r,, t), P,, i(t), and P(r,+, , t). When the second 
component is scaled by (r - r,)/h, and added to the first component, the scaled 
derivative is represented by the vector originating at P(r,, t) and ending on the 
second component at its scaled length. Now, as r varies from rm to r,,,+ , , the head of 
the scaled derivative vector moves linearly in r from the tail to the head of the second 
component. The rate at which the scaled derivative vector rotates as the curve is 
traversed with increasing r is best measured when it is normalized to unit length. 
Under the normalization, only unit tangent vectors to the curve are examined; 
rotation is then the only possible motion. In Fig. 5, the collection of unit tangent 
vectors is represented by the points on the unit circle centered about P(r,, t). The 
curved arrow along the circle in Fig. 5 gives the total angular rotation that the 
tangent vector, given by the scaled derivative, has traversed. It should be clear that 
the rotation is monotone in r, hence, in curve arc length, since r is monotonically 
related to arc length. When P(r,, t), P,, i(t), and P(r,,,+ i, t) are not collinear, there is 
strict monotonicity, and the coordinate curve in r bends uniformly with the same 
direction of concavity as a circular arc approximation to the original noncollinear 
points with center at the arrow head of the discrete normal vector emanating from 
P,, ,(t) in Fig. 5. When the points are collinear, the coordinate curve in r degenerates 
to a straight line since the discrete normal vector, which is an approximation to a 
scaled second derivative, vanishes. As a result, there is no angular motion, reflected 
by the fact that there would be only one point on the unit circle to represent all unit 
tangent vectors for the curve segment. In formal terms, the curvature of the coor- 
dinate curves in r is just the arc length rate of change of the total angular rotation 
displayed in Fig. 5. To reexpress the conclusions, the coordinate curves in r for 
r,<r<r,+, have strictly positive curvature in the noncollinear case and vanishing 
curvature in the collinear case. In the noncollinear case, the maximum curvature 
occurs when the actual tangent vector (Eq. (17)) is perpendicular to the discrete 
normal vector. In Fig. 5, perpendicularity leads to a tangent vector of minimal length 
and a discrete normal with a maximal projection onto tangent vectors of the unit 
circle. The minimal length for curve tangents means that the arc length derivative of r 
is maximal. The maximal projection for the discrete normal, and hence the second 
derivative, means that the rate of rotation is greatest. But the curvature is then just 
the product of these two quantities, each of which is maximal at the point of perpen- 
dicularity; hence, the curvature itself is maximal there. 

In continuation, the osculating circle, defined as the tangent circle with matching 
second derivatives, has a center on the concave side of the curve measured from its 
point of contact with the curve. As r varies from rm to r,,,+ I, the centers of the 
osculating circles all lie on the same side of the curve as does the center of the above 
mentioned circular approximation determined from the discrete normal vector. The 
result is that the coordinate curves in the r variable share the same convexity 
properties as the data determined by the intermediate surfaces for a fixed parameter t. 
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Such curves are called coconvex approximations to the data. In addition to the 
coconvex’ property, the curve also preserves existing monotonicity in the data, as can 
be witnessed by observation of Fig. 5 and the accompanying discussion. An 
illustration of a sample curve, with the properties discussed, is given in Fig. 6. The 
coordinate evaluations at partition points and the strict convexity within the intervals 
determined by partition points is evident from Fig. 6. Also evident from Fig. 6 is the 
potential change in convexity at a partition point r,,,. Formally speaking, inflection 
points can occur at partition points rm because the second r derivative is undefined 
there, except in certain cases when the curve locally degenerates to a single segment. 
The second derivative, rather than the curvature, is the critical measure for the type 
of inflection considered. To see why, consider a composite curve formed by the arcs 
of two distinct unit circles which are joined together at a point of tangency. Clearly, 
the composite curve has a continuous first derivative and a continuous curvature 
which is unity. But it has a discontinuous second derivative at the juncture between 
circles where, like the junctures for variable r coordinate curves, there is a change in 
concavity, an indication that the juncture is an inflection point. In another context, 
G. M. Nielson [ 161 used curves with continuous curvature but with discontinuous 
parametric second derivatives to formulate his splines with distributed tension. In 
addition to the convexity properties, the tangent vectors to the coordinate curves in r 
are nonvanishing and continuous for all r, including the inflection points. The tangent 
properties come from the multisurface interpolation (Eq. (1)) with continuous (Co) 
interpolants (Eq. (11)) and is illustrated in Fig. 6. The continuous nonvanishing 
tangent vectors should not be taken entirely for granted, since curve continuity even 
up to second derivatives alone would not guarantee the result. To illustrate the point, 
consider the absolute value function y = 1x1 in the parametric form given by (-x4, x4) 
for x < 0 and (x4, x4) for x > 0. Parametrically, the curve belongs to class C * but has 
a slope discontinuity and a vanishing tangent at x = 0. 

With the characteristics of the coordinate curves in r established above, the next 
task is to examine uniformity in the distribution of coordinate surfaces defined by 

FIG. 6. Two segments of a coordinate curve in the r variable corresponding to the intervals 
r,,- , ( r < rm and rm Q r < r,,,+ I, respectively. 

581/47/3-Z 
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constant values of r. ‘By direct substitution from Eq. (11) into Eq. (10) of Theorem 1, 
the interpolation functions are clearly seen to be admissible. From Eqs. (11) and (12), 
the discrete projections defined by Eq. (5b) and given in Eq. (9) become 

C,(t) = b(t) h,/W,-, - r,)r (184 

C,(f) = wwh-l + w%-N- I - r,), (18b) 
for 2<k<N-2; and 

C,- I(t) = b(f) k,-z/2@,-, - r,), (18~) 

in correspondence with the summary of Theorem 1. When the partition points 
r, < r2 c .. . < r,- i and/or when the intermediate control surfaces in the multisurface 
transformation (Eq. (2)) are selected so that the discrete projections satisfy Eq. (18), 
then the transformation distributes its constant r surfaces uniformly in a global 
manner. When two or more successive equations in Eq. (18) are satisfied, the 
uniformity is obtained locally. For example, if C,(t) and C,+,(t) are given by 
Eq. (18), then Eq. (13) yields a uniform distribution of constant r coordinate surfaces 
between P(r,, t) and P(r,+ i, t) from Eq. (14) as r varies from r, to r,,, + , . 

For a fixed parameter t, the multisurface transformation reduces to a curve approx- 
imation or interpolation algorithm. When z(t) in Eq. (4) is selected to define a 
horizontal axis of a Cartesian system and when global uniformity from Eq. (18) is 
applied, a standard functional representation is obtained for the curve with r 
uniformly distributed along the horizontal axis. An approximation to the constructive 
surfaces Pi(t), P*(t),..., P,,,(f) is then a direct result in the approximation of functions. 
When the data is taken as the multisurface evaluations P(r, , t), P(r,, t),..., P(r,- I) t) 
rather than the constructive surfaces, then an interpolation is obtained. If the inter- 
mediate surfaces are properly chosen, then the interpolation preserves’ the 
monotonicity and convexity of the given data. For this choice, the alpha-algorithm 
given by McAllister et al. [ 171 can be applied. When their j-algorithm is applied 
along with point insertion, the interpolation then reduces to the case that they 
presented in [ 181. 

COORDINATE SYSTEMS ABOUT AIRFOILS 

With the local interpolants, precise local controls were formally established for the 
multisurface transformations. The controls provided the power to prescribe many 
important mesh properties. To demonstrate this power in an explicit sense, an 
illustrative sequence of meshes is given here. For simplicity, each is generated about a 
NACAO012 airfoil that is of unit length and with leading edge pointed in a negative 
x-direction. 

In the first case, the airfoil is symmetrically surrounded by a box with 4 units in 
length, 2 in height and with circular arcs of radius 0.25 to round the corners. Along 
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the airfoil, a pointwise distribution is prescribed to cluster points at both leading and 
trailing edges. Along the box, a uniform pointwise distribution is prescribed. In 
addition to these distributions, the mesh properties are to also include orthogonality 
at both boundaries, a uniform distribution of coordinate curves above and below the 
airfoil, a progressively more rapid bending of coordinate curves on approaching the 
trailing edge, and a constant rate of entry into the box. All of the properties listed 
here are obtained with just N = 5 constructive surfaces P, in Eq. (2) with partition 
points rk = (k - l)/(N - 2). On the approach to the trailing edge, a polarlike system 
is more closely approximated if the coordinate curves which leave the airfoil become 
progressively flatter. The flatness is achieved when the curve is forced to bend into a 
line at a close distance from the airfoil. To accomplish the desired progressive 
bending, the first control surface P, is selected to coincide with the airfoil P, at its 
trailing edge, to gradually depart from the airfoil in going over it, to be at a 
maximum distance at the halfway point, then to go under the airfoil, and to gradually 
return to the trailing edge. The selection here is given by 

where n”, is the outward unit normal from the airfoil, S(t) is the airfoil arc length as a 
function of the surface parameter, and S,,, is the total arc length of the airfoil. The 
surface parameter t leads to the pointwise distributions, is taken to go from 0 to 1, 
and yields a counterclockwise orientation for the constructive surfaces. Moreover, its 
direct use for P, in Eq. (19) causes an orthogonal alignment with points on Pi. Had 
P, been parameterized by P#(t)) for some nonlinear monotone function f, then 
there would have been no such alignment. For orthogonality at the box P,(t), the 
control surface P.,(f) is defined by 

P4(f) = P,(t) - 0.1256,(t), (20) 

where n^, is the outward unit normal field from the box. The constant displacement of 
0.125 yields a uniform rate of entry into the box. The parameter t is the normalized 
box arc length that starts with the value of 0 at the positive x-axis, traverses the box 
in a counterclockwise direction, and ends back at the positive x-axis with the value of 
1. With this parametric choice, the airfoil trailing edge and the box endpoints are 
aligned along the positive x-axis and both box and airfoil are given the same orien- 
tation. To obtain exact local linearity for coordinate curves connecting airfoil to box, 
the inner control surface P, is defined by the average 

P&l = f P*W + P.df)l~ (21) 

with the indicated parametric correspondence. The resultant linearity occurs for 
values of r between r2 = 3 and r3 = $. The earlier parametric alignment gives 
orthogonality at the airfoil when r = r, = 0 and at the box when r = r4 = 1. In 
addition, because of the factors 0.15 in Eq. (19) and 0.125 in Eq. (20), there is a 
rough approximation to the uniformity conditions of Eq. (18) both above and below 
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the airfoil. Specifically, the spacing of control surfaces in the regions is in a nearly 
2 : 1 ratio in leaving boundaries and is precisely 1 : 1 in the center. The resulting mesh 
is displayed in Fig. 7. On inspection, the specified mesh properties from the controls 
are evident. 

With the boundary properties, the system for an airfoil in a box can be stacked in 
periodic alignment to produce a composite mesh that has continuous derivatives and 
which can be used to study cascades of unstaggerd airfoils. To include stagger, the 
airfoil must be rotated by a stagger angle and the box must be appropriately 
deformed. For this example, the same Ssurface format is used. The airfoil P, and the 
first control surface P, are rotated by a stagger angle of 45’. The box is deformed 
into a contour composed of successive line segments and circular arcs that parallel 
the airfoil camber line above and below the airfoil and which is smoothly capped at 
each end by half boxes. A gap of 1 between airfoils is specified with the top and 
bottom of the deformed box taken as 0.5 units both above and below the airfoil. 
Extensions both in front and in back are chosen also to be at one half the gap which 
is 0.5 units. From the deformed box P,, the control surfaces P, and P, are prescribed 
as before. To reflect the decrease in gap by a factor of two from the pure box 
example, the constants 0.15 and 0.125 appearing in Eqs. (19) and (20) are each 
divided by two. With a replacement of the independent variable r by a distribution 
function, a concentration of the mesh is specified near the airfoil. Along the airfoil 
surface, the mesh is clustered at leading and trailing edges with the trailing edge 
cluster being greatest on the bottom to push points into parametric alignment with the 
exit boundary. The rotated airfoil in the deformed box is then stacked in periodic 
alignment and extended both upstream and downstream by Cartesian systems. The 
resulting mesh is continuously differentiable everywhere and is displayed in Fig. 8. 
On examination, the mesh is seen to cover everything except two triangular regions 
that are bounded by distinct coordinate systems. From the periodic line, the 
Cartesian systems contain the distribution obtained from horizontal projections of 

FIG. 7. Coordinates for an airfoil in a box. 



CONTROLS OVER MESH PROPERTIES 349 

FIG. 8. A composite coordinate mesh for a cascade of airfoils with 45” stagger. 

points along the circular arcs which border the triangular regions. The resultant 
Cartesian system is then distributed sinusoidally from the periodic line to smoothly 
join a uniform distribution for the remainder. Unlike previous cascade meshes, this 
composite system can be used for highly staggered closely spaced airfoils and has the 
clear advantage of the independent upstream and downstream Cartesian systems. 
Without the composite system, severe mesh distortion or growth would occur at even 
modest upstream and downstream extensions, regardless of which transformation 
method is used. The utilization of distinct coordinate systems has presented a 
topological problem which is clearly independent of the method of generation for 
each and which is reflected in the uncovered triangular shaped regions that resulted 
from the concurrent demand for nonsingularity. Such a composite system is 
obviously to be applied only when the uncovered regions are sufficiently small and/or 
are located in places where the solution is mild. An alternative approach is to relax 
the demand for nonsingularity and fill in the uncovered regions. In such a case, the 
system which loops around the airfoil would have singularities at some boundary 
corners which would propagate inward. With the use of several additional control 
surfaces, the inward propagation can be arbitrarily restricted to a region close to the 
distorted box while the previously prescribed mesh structure is retained. The local 
dependence on the control surfaces yields the power to create the desired restriction 
that can be taken to occur before the first inward mesh point. This effectively keeps 
the singularities from propagating inward. 
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FIG. 9. Coordinates for an airfoil in a box with a local orthogonal disk around the airfoil. 

Rather than pursue restrictions on the propagation of singularities, the several 
additional control surfaces will be used here to embed a desirable mesh structure 
within the global mesh. For this example, the original box format is considered again 
and the airfoil is now also to be surrounded by a local orthogonal system that 
smoothly deviates from orthogonality to meet the box with the previous mesh form. 
To form the local orthogonal system, three control surfaces replace a previous single 
surface and are given as uniform expansions in the outward normal directions from 
the airfoil. Orthogonal parametric alignment is prescribed as in Eq. (20) and the 
spacing is taken to satisfy the uniformity conditions of Eq. (18). With a subsequent 
clustering transformation for the r variable, the mesh is displayed in Fig. (9). The 
orthogonal region is observed to cover the locations where the ‘significant fluid 
dynamic properties are typically expected to occur. 

SUMMARY 

Powerful local controls have been developed for mesh generation with the class of 
multisurface coordinate transformations. The controls come from local piecewise 
linear interpolants, and the resulting coordinates have continuous first derivatives. At 
boundaries, the mesh controls bring the capability to join distinct coordinate systems 
together with continuous derivatives. On regions in an area sense, mesh controls 
permit specifed structures to be smoothly embedded. Of paramount importance for 
area specifications are the uniformity controls that were derived in general for both 
global and local distributions of transverse coordinate curves. Applications of the 
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controls were given here by an illustrative sequence of two-dimensional examples. To 
consider general three-dimensional applications, however, at least two continuous 
derivatives are needed in order that the coordinate curves will bend continuously. 
Otherwise, undesirable creases could arbitrarily occur on coordinate surfaces. In a 
companion study [ 131, the local theory is extended to include the higher level of 
derivative continuity that is necessary to prevent problems such as the occurence of 
creases. In correspondence with the overall theory, a mesh generation software 
system has also been constructed under NASA Contract NAS3-22117. 
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